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ABSTRACT The fidelity of the trajectories obtained from video-based particle tracking determines the success of a variety of
biophysical techniques, including in situ single cell particle tracking and in vitro motility assays. However, the image acquisition
process is complicated by system noise, which causes positioning error in the trajectories derived from image analysis. Here, we
explore the possibility of reducing the positioning error by the application of a Kalman filter, a powerful algorithm to estimate the
state of a linear dynamic system from noisy measurements. We show that the optimal Kalman filter parameters can be deter-
mined in an appropriate experimental setting, and that the Kalman filter can markedly reduce the positioning error while retaining
the intrinsic fluctuations of the dynamic process. We believe the Kalman filter can potentially serve as a powerful tool to infer
a trajectory of ultra-high fidelity from noisy images, revealing the details of dynamic cellular processes.
INTRODUCTION
The motion of intracellular particles, such as macromolec-

ular complexes or organelles, is crucial for the spatial and

temporal organization of cell function (1,2). Bacterial inva-

sion into mammalian cells also involves harnessing the

ability of the microorganism to move within the intracellular

microenvironment of host cells (3). High-resolution imaging

is the most direct method of studying the physical motion of

intracellular objects and tracked particles. For example, the

video analysis of motor protein-driven transport of particles

has greatly improved our understanding of the function of

motor proteins (4,5). In these studies, particle tracking served

as the fundamental method for studying the real-time move-

ment of the transported objects in living cells.

Particle tracking has been applied successfully to study

various subcellular events, such as genomic dynamics (6),

viral infection (7,8), cellular endocytosis (9), membrane

protein trafficking (10), and cargo transport (11). Particle

tracking has also been applied to probe the mechanical prop-

erties of the intracellular region of the live cells via particle

tracking microrheology (12), which analyzes the displace-

ment fluctuations of an inert particle embedded in the cyto-

plasmic region of a live cell. Using the microrheology

theorem (13,14), the rheological parameters of a cell, such

as creep compliance, elastic modulus, and viscous modulus,

have been quantified (12,15). Compared to other techniques,

such as atomic force microscopy, intracellular microrheol-
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ogy acquires the physical properties of the intracellular

region of the cells with minimal perturbations. Using this

technique, the mechanical properties of various cell lines

under different extracellular stimuli (chemical (15) and

mechanical (16)) and microenvironmental topology (two-

dimensional versus three-dimensional (17)) have been

probed.

Because the particle-tracking technique can contribute

valuable insights into many biological events, the accuracy

of particle tracking is critically important for effectiveness

of those studies. However, in a particle tracking experiment,

the sensor noise in the image acquisition system is trans-

formed into a positioning error. As a result, the computed

particle trajectory is a noisy version of the true particle trajec-

tory. This hinders a deeper analysis of the trajectory aimed at

gaining detailed insights into the dynamic process related to

the observed object (Fig. 1) (18). Accordingly, many

advanced instruments were recently developed, which

improve the spatial resolution of tracking techniques

(19,20). However, signal filtering and estimation algorithms

offer an alternative route to reducing the extraneous noise

associated with particle trajectories. These algorithms can

be applied regardless of the underlying instrumentation,

and thus provide a general approach that can effectively

enhance the spatial resolution of particle tracking.

Deriving states of a dynamic system from noisy measure-

ments is a very well-researched problem in control and esti-

mation theory. In particular, the Kalman filter (21) algorithm

provides the optimal state estimate for linear dynamic

systems from sensor measurements in the presence of

Gaussian noise. The Kalman filter is a technique and has

been successfully applied in a wide variety of situations in

engineering and science (22,23). The potential to use

a Kalman filter to study cell motion has been mentioned

in passing (24). In this study, we explore in detail the
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FIGURE 1 Schematic illustration of the principle of Kalman filter in estimating the accurate trajectory in a cellular dynamic process. The relation between

adjacent steps of a trajectory is xkþ1 ¼ xk þ uk þ wk, where the occurring displacements before the next monitored time for the particle in xk position are

determined by its projective movement displacement, uk, and a random movement generated by thermal fluctuation, wk. The subscript k represents the kth step

of the tracking trajectory. In tracking experiments, the real particle position, xkþ1, is recorded as zkþ1 due to the positioning error. The Kalman filter is an

established algorithm to restore the correct trajectory for a linear process.
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application of the Kalman filter algorithm to improve the

estimation of the particle trajectory obtained from a micro-

scopic particle tracking experiment.

We first show that the Kalman filter can be used to estimate

the intrinsic trajectories from noisy measurements. Next, we

explain how the input parameters (the variance of process

and measurement noise) necessary for the design of the

Kalman filter can be estimated for a given experimental situ-

ation. Third, we discuss the efficacy of the Kalman filter in

particle tracking. Finally, we examine in vitro particle

tracking in glycerol and in a gliding motility assay to validate

the application of the Kalman filter. We conclude that the

Kalman filter can effectively eliminate the positioning error

generated by measurement noise if the measurement noise

and process fluctuation variance parameters are chosen appro-

priately. As a result, the accuracy of the trajectory derived

from particle tracking experiments is improved, which in

turn can provide the reliable biophysical information critical

for the understanding of various biological processes.
MATERIALS AND METHODS

The parameters of the Kalman filter related to
a particle tracking trajectory

Video-based particle tracking uses the visual information in a sequence of

captured images to reconstruct the trajectories of labeled objects and deter-

mine their dynamical properties. The temporal resolution in a particle

tracking experiment is determined from the time between each frame, repre-

sented by Dt. Individual image frames in the tracking sequence can then be

denoted by their respective timestep, k, and a subscript k can represent the

value of a given variable at time k � Dt. Conceptually, the position of

a tracked object in a new frame at time (k þ 1) � Dt is the result of a combi-

nation of active motion and random displacements due to thermal fluctua-

tions that acted on the object over Dt because its previous position at time

k � Dt. In biological systems, the heterogeneous presence of obstacles

restricts the magnitude of an object’s velocity in a manner that intrinsically

fluctuates. Thus, the change in position between timesteps can be described

by a constant directed movement, u0, associated with a fluctuation, w0, as

well as the intrinsic thermal fluctuations. Using an ensemble fluctuation
term, wk, to account for w0 and the thermal fluctuations, the conceptual posi-

tion, xkþ1, of a tracked object in a new frame can be formulated as:

xkþ 1 ¼ xk þ u0 þ wk: (1)

This relationship between position, active motion, and thermal fluctua-

tions has been established previously in different forms (25,26). However,

during the image acquisition process there is an intrinsic measurement noise,

vk, that leads to the measured position, zk, from its true value xk as described

by:

zk ¼ xk þ vk: (2)

The Kalman filter is a recursive, computational method to make an esti-

mate of the true value of the position xk from the knowledge of the noisy

observations zk (while preserving their intrinsic fluctuations (21)). However,

having a better understanding of the parameters that govern the motion of an

object is necessary before describing the major input factors of the Kalman

filter. The measurement noise, vk, is assumed to obey:

vk � Nð0; RkÞ; (3)

where N(0,Rk) is the Gaussian distribution function describing white noise

with a zero mean and a variance of position measurement error, Rk. Simi-

larly, the process noise wk caused by thermal fluctuations is assumed to

obey:

wk � Nð0; QkÞ; (4)

where N(0,Qk) is also the Gaussian distribution function with zero mean and

variance of thermal fluctuations, Qk. In one-dimensional Brownian dynamics,

Qk¼ 2�D� t, where D is the effective diffusivity of a labeled object and t is

the diffusion time. If tracking object undergoes pure Brownian motion, the

value of u0 is zero, and the value of wk only represents the thermal fluctuations.

In the case of directed motion, the magnitude of u0 can be experimentally esti-

mated by calculating the average displacement between timesteps, i.e.,

u0 ¼ hzkþ1 � zki. We will assume that Qk and Rk are time-invariant, i.e., inde-

pendent of k, and denote them by Q and R respectively.

Taking all of this into account, the most important parameters of the Kal-

man filter are the raw trajectory information and the variance terms Q and R.

The value of R for a tracked particle can be extracted as described previously

(27), but the value of Q must be attained using another method. The MSD of

the measured trajectory, zk, is calculated as the variance of the measured

displacement, S(h var(dz)), and is related to Q and R by (18,27):

S ¼ Q þ 2 � R: (5)
Biophysical Journal 98(12) 2822–2830
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Because noise from image acquisition does not directly influence the

physical system of interest, the value of Q is independent of R, and this rela-

tionship serves as an explicit method to estimate Q.
The Kalman filter gain is determined by the ratio
Q/R but not Q or R

K ¼
ðQ=RÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ=RÞ2þ 4ðQ=RÞ

q

2 þ ðQ=RÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ=RÞ2þ 4ðQ=RÞ

q : (6)

The Kalman filter gain (or Kalman gain) is the key parameter than governs

the filter algorithm and determines the performance of the Kalman filter. The

computation of K is carried out by applying the standard Kalman filtering

theory that leads to the optimal value of K under assumptions of linear

dynamics with Gaussian process and measurement noise. The analytical

relationship of the Kalman gain to the ratio Q/R is determined as Eq. 6

(see Supporting Material). This equation underscores the fact that for our

model (Eqs. 1–4) the value of K depends on the Q/R but not the individual

Q- and R-values.
Application of the Kalman filter to simulated
trajectories

The trajectory of a labeled object undergoing linear motion (e.g., Brownian

motion or active movement containing thermal fluctuation) can be simulated

based on Eq. 1 and Eq. 4. The effective diffusivity and temporal resolution

applied to the simulation were 0.006 mm2/s and 0.033 s, respectively, which

were extracted from particle tracking experiments of 100-nm microspheres

in glycerol solution. From these conditions, the variance of a one-dimen-

sional thermal fluctuation is represented by QT (¼ 2 � 0.006 � 0.033).

For the simulation of Brownian motion the velocity of active movement is

set to zero. In each simulation, a trajectory contains 1000 timesteps; and

extrinsic noise with variance, RT, is further added to each step based on

Eq. 2 and Eq. 3 to mimic the positioning error resulting from the imaging

process.

The Kalman filter was then applied to these simulated noisy trajectories

using several values of Q and R to understand the performance of the filter

as the input variance terms differed from their true values (here, QT and RT).

The accuracy of the filtered trajectory was evaluated by calculating the

RMSE (i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbxkjk � xkÞ2

q
).
Microscopic particle tracking system

A Cascade:1K EMCCD camera (Roper Scientific, Tucson, AZ) mounted

on a TE 2000-E inverted microscope (Nikon, Melville, NY) with

a 60�, NA 1.45, oil-immersion objective lens (Nikon) was used to

acquire particle-tracking video for image analysis. The particle tracking

experiments were carried out by capturing video at a rate of 30 fps.

Each image sequence is composed of 650 frames. To achieve this high

temporal resolution, the region of interest function in the camera was acti-

vated and the binning was set at 3-by-3 for the particle tracking in glyc-

erol (390 nm effective pixel size) and 2-by-2 for the gliding motility assay

(260 nm effective pixel size).
Particle tracking experiments in glycerol solutions

Carboxylated polystyrene fluorospheres (Invitrogen, Carlsbad, CA) with

100-nm diameter in water were diluted into glycerol at 1:1000 volume

ratio. A drop of the mixture was placed on the central area of a glass

bottom dish (MatTek, Ashland, MA) for video-based particle tracking
Biophysical Journal 98(12) 2822–2830
experiments. The particle tracking method was described previously

(27). In brief, the background noise of the raw image stack was reduced

using a Gaussian kernel filter (18,28). Afterward, a two-dimensional

Gaussian distribution with logarithmic weighting was used to least-square

fit the intensity distribution of the particles in the region contains the pixel

possessing the maximum intensity and its four adjacent pixels to deter-

mine the positions of the particles.

Particle tracking experiments in gliding motility
assays

Kinesin was prepared as described previously (29). Microtubules were

prepared by polymerizing 20 mg biotin-labeled tubulin (Cytoskeleton,

Denver, CO) in 6.5 mL growth solution, containing 4 mM MgCl2,

1 mM GTP, and 5% (v/v) DMSO in BRB80 buffer (80 mM PIPES,

pH 6.9, 1 mM MgCl2, 1 mM EGTA) for 30 min at 37�C. The microtu-

bules were 100-fold diluted and stabilized in 10 mM Paclitaxel (Sigma,

St. Louis, MO). The experiments were carried out in ~100 mm high and

1 cm wide flow cells assembled from two coverslips and double-stick tape

(30). First, BRB80 with 0.5 mg/mL casein (Sigma) was injected into the

flow cell. After 5 min, it was exchanged with a kinesin solution (BRB80

with 0.5 mg/mL casein, ~10 nM kinesin, and 20 mM ATP). Five minutes

later, this was exchanged against a motility solution (0.2 mg/mL casein,

20 mM D-glucose, 20 mg/mL glucose oxidase, 8 mg/mL catalase, 10 mM

dithiothreitol, and 20 mM ATP in BRB80) containing 0.8 mg/mL biotiny-

lated microtubules. Five minutes were allowed for microtubule attachment

after which 20 nM Alexa 568-labeled streptavidin (Invitrogen) in motility

solution was perfused into the flow cell and incubated for 5 min to cover

all the biotin sites on the microtubules (31). Finally, after three washes

with motility solution, biotin-labeled 40 nm fluorospheres (Invitrogen)

at 100 pM concentration in motility solution were introduced into the

flow cell and the edges of the flow cell were sealed with Apiezon grease

to minimize evaporation.
RESULTS

To explore the application of the Kalman filter to effectively

correct the influence of measurement noise on position esti-

mation in single particle-tracking experiments, an error-free

Brownian trajectory was simulated to serve as the reference

trajectory (Fig. 2 A). Positioning errors with increasing vari-

ance values, denoted as R, were individually added to the

reference trajectory to derive four noisy trajectories

(Fig. 2 B; from the left to the right, R ¼ 0.0004, 0.0011,

0.004, and 0.04, respectively). In these simulated trajecto-

ries, the input parameters, including the R-values, were

chosen based on typical experimental conditions (27). The

Kalman filter was applied to these trajectories and the root

mean-square errors (RMSE) of the positions between the

estimated trajectories and the error-free trajectory were deter-

mined. The application of the Kalman filter requires two

input parameters, the variance of thermal fluctuation (Q)

(from process noise) and the variance of positioning error

(R) (from measurement noise), which are not known a priori.

We first chose identical values for Q and R and calculated the

resulting RMSE values to determine whether Kalman

filtering could improve the noisy trajectories. The results

show that the Kalman filter can reduce the positioning error

even if the input parameters are arbitrarily assigned

(Fig. 2 C). However, if the true values of Q and R are used
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FIGURE 2 Estimation of the true trajectory from posi-

tioning errors using Kalman filter. (A) A simulated Brow-

nian motion trajectory is represented without positioning

error. (B) Increasing degrees (from left to right) of posi-

tioning error (quantified by its variance R) are added to

the simulated trajectory. Higher R-values yield noisier

trajectories. (C) The Kalman filter removes some extrinsic

noise under an arbitrary setting of the input parameters Ri

and Qi, e.g., Qi ¼ Ri ¼ Q, where Q is the thermal fluctua-

tion variance. (D) The Kalman filter restores the noisy

trajectories if the correct Q- and R-value are used as input

parameters Qi and Ri. (E) A simulated active motion trajec-

tory is represented without positioning error. (F) Increasing

degrees of positioning error are added to the active motion

trajectory. (G) The Kalman filter improves the noisy trajec-

tories under the setting Q ¼ R. (H) The Kalman filter

restores the noisy trajectories under the correct Q and R
setting.
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(known for the simulation), the positioning error of the noisy

trajectories can be further reduced up to ~3-fold (Fig. 2 D).

The evaluation of the Kalman filter was further extended

to trajectories describing active motion. Active motion

trajectories without (Fig. 2 E) or with positioning error

(Fig. 2 F; from the left to the right, R ¼ 0.0004, 0.0011,

0.004, and 0.04, respectively) were simulated. Either arbi-

trary (Fig. 2 G) or accurate (Fig. 2 H) Kalman filter input

parameters were applied to the noisy trajectories to estimate

the true trajectories. Again, the positioning error generated

during the acquisition process was reduced, and the optimal

performance of the Kalman filter depended on the correct

choice of input parameters.

These simulations suggest that the Kalman filter can effec-

tively eliminate positioning error caused by measurement

noise while retaining the intrinsic thermal fluctuations if

the input parameters, Q and R, are available. However, the

Q and R are two independent unknowns, whose values
cannot be directly determined from an acquired image.

Previously, we developed a Monte Carlo method that uses

empirical parameters obtained from images to extract the

value of R (27). This value of R is a positioning error that

is individually estimated for each of our imaging experi-

ments because R depends strongly on the incident light

intensity and parameters of the acquisition system. The value

of Q can be determined using Eq. 5 (18,27). Because S can

be obtained from experiments, the value of Q can be

obtained as S � 2 � R (Fig. 3; also see Materials and

Methods). A potential shortcoming of this method is that

errors in the determination of R and S directly affect the

accuracy of Q.

To assess the impact of inaccurate Q- and R-values in

a model system, we tracked freely diffusive 100-nm diameter

carboxylated polystyrene fluorescent particles in glycerol at

room temperature and an acquisition frequency of 33 fps.

These experiments were repeated many times and the value
Biophysical Journal 98(12) 2822–2830
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of R was estimated using the Monte Carlo procedure for each

experiment (27). Comparing the resulting microrheological

measurement of the viscosity of glycerol with a conventional

rheological measurement validated the accuracy of R. The

standard deviation (SD) of R from 20 independent simula-

tions is <3%, which is a further indication of the precision

of this technique. Next, S was calculated as the MSD of

the particles, and the value of Q for each experiment was ob-

tained by using the relation, Qi ¼ Si � 2 � Ri, where the

subscript i represents an independent tracking experiment.

A plot of S and Q against the corresponding R shows that

S and R are proportional to each other whereas Q remains

constant through different values of R (Fig. 4 A inset). This
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calculated Q-value was also in agreement with the theoreti-

cally calculated thermal fluctuations at room temperature,

QRT (¼ 0.8 � 10�3 mm2) (27). We next determined the

mean and the SD of Q within fixed intervals of R
(Fig. 4 A). Although Q and R are independent, the SD of

Q does increase with R. Because the experimental values

of Q and R can be obtained, we can evaluate the performance

of the Kalman filter on measured trajectories using the exper-

imentally determined Q and R.

For the linear dynamic model, it is easily shown that the

Kalman gain is determined only by the ratio of Q to R, and

not the individual Q- and R-values (see Eq. 6 and Supporting

Material). Thus, we described the performance of Kalman
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filtering by the plot of RMSE versus normalized Q/R (¼ (Q/

R)/(QT/RT) ¼ (Q/R)/(Q/R)T), where the QT and RT represent

the true variances of thermal fluctuation and positioning

error in the acquired image, respectively (Fig. 4 B). As

expected, the minimum RMSE value always occurs at

normalized Q/R ¼ 1, where the Kalman filter uses the accu-

rate input ratio for the parameters, Q and R. Because the

determination of the Q-value using the procedure described

above has some uncertainty (light orange region: 1 SD

around mean of Q; dark blue region: 2 SD around the

mean), the RMSE values obtained using the experimentally

determined Q/R tend to be slightly larger than the optimum.

These RMSE values can be compared to the RMSE value at

very large normalized Q/R (e.g., 104). In this region, the Kal-

man filter assumes minimal measurement noise and places

a much greater reliance on the measurements by making

minimal changes to the measured trajectory. Therefore, the

RMSE values at very large normalized Q/R are representa-

tive of the unfiltered RMSE values. A comparison shows

that the experimentally obtained R- and Q-values lead the

Kalman filter to estimate more accurate trajectories with

smaller RMSE values when compared to the RMSE values

of the original trajectory.

Based on the experimental data, we can quantify the

percentage of RMSE improvement after applying the Kalman

filter (Fig. 4 C). Using the mean value of R in each R-interval

and the corresponding Q at the mean 5 1 SD as the input

parameters of the Kalman filter, the RMSE of the filtered

trajectories can be calculated and compared to the minimal

RMSE value obtained for Q/R equal to (Q/R)T. The data

((;) left- and (:) right-bound in Fig. 4 C) suggests that within

the SD (68.2%) of the Q-value, the Kalman filter achieves at

least 82% of the maximal reduction in RMSE value. First,

considering that an accurate estimate of R can be obtained in

the experiment using our Monte Carlo simulation technique,

second, that the estimate of Q/R determined in real experiments

has a limited range (e.g., normalized Q/R values vary

from ~0.79 to 1.16 and ~0.63 to 2.3 for R ~6 � 10�4 and

3.4 � 10�3 mm2, respectively, in Fig. 4 B), and finally that

the filtered RMSE value for input parameters, Q and R, in

this limited range is very close to the minimum RMSE value

obtained for the optimal Q/R, we conclude that the application
of Kalman filter as described can reliably reduce the posi-

tioning error generated in the image acquisition process.

To show the application of the Kalman filter to experi-

mental data of a purely diffusive process, particle tracking

of 100-nm carboxylated polystyrene fluorescent micro-

spheres in glycerol was carried out and the MSD profiles

(Fig. 5 A) were calculated from the tracking trajectories (a

representative trajectory was shown in Fig. 5 A, inset).
When the Kalman filter was applied to these trajectories using

the values of R and Q extracted from the tracking images,

a group of new MSD profiles (Fig. 5 B) can be calculated

from the filtered trajectories (a filtered trajectory is shown in

Fig. 5 B, inset). Because glycerol is a homogenous solution

and the MSD profiles generated from the trajectories of the

diffusing microspheres should overlap, the narrowing of the

bundle of MSD profiles shows the removal of extrinsic noise

by the Kalman filter. The more accurate determination of the

intrinsic MSD using the Kalman filter enables a better resolu-

tion of molecular processes in subcellular dynamics studies.

We further applied the Kalman filter to an active transport

process by estimating a more accurate trajectory of beads

attached to a microtubule gliding on surface-adhered kine-

sin-1 motors (Fig. 6 A). These position data and the extracted

parameters, R and Q, from the images were used as input for

the Kalman filter, and the estimated trajectory for the micro-

tubule was obtained (Fig. 6 B). The average distance covered

as a function of the time between frames (Fig. 6 C) and the

variance of the fluctuations around this average distance as

a function of the time lag (Fig. 6 D) show the expected linear

behavior (24,32,33) for the filtered trajectory, whereas

system noise distorts the unfiltered quantities. If the microtu-

bules were stationary objects, the position variance of the

attached beads would not display this linear increase.

However, the active movement of the microtubules during

the gliding motility assays will directly affect the observed

position of the attached beads. In essence, the gliding motion

is thought to consist of a movement with constant velocity

(caused by the active transport by the surface-adhered

motors) superimposed with a diffusive movement against

a high drag caused by protein friction (motor binding events

that do not contribute a forward force). Thus, it is the diffu-

sive movement of the microtubules and not the attached
Biophysical Journal 98(12) 2822–2830
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FIGURE 6 Improving the positioning error

of particle tracking in gliding motility assays

using Kalman filter. (A) Images of a gliding

motility assay. Images from left to right repre-

sent the microtubule, the nanosphere at 0 s

and the nanosphere at time 15.6 s, respectively.

The arrow indicates the initial position of the

nanosphere, which is moving with a microtu-

bule. (B) Observed trajectory (left) and filtered

trajectory (right) of this nanosphere during the

observation time period (15.6 s). Scale bar ¼
200 nm. (C) Average of nanosphere displace-

ment as a function of time interval. Removal

of noise reduces the displacement at small

time intervals of the filtered trajectory (B) rela-

tive to the raw trajectory (,), as expected for

movement with constant velocity. (D) Variance

of nanosphere displacement as a function of

time interval for the filtered (B) and raw (,)

trajectory. Removal of measurement noise

yields the expected linear function starting at

the origin and enables a correct estimate of the

motional diffusion coefficient (24). (E) MSD

from the different particle trajectories for

different time lag is plotted. The value of the

observed MSD (dashed line) is roughly fivefold

higher in comparison to MSD values with static

error removed (solid line) and MSD values

calculated from the Kalman filtered trajectory

(,). (F) The innovation residual of the Kalman

filter (zk � x̂k or the difference between

observed and predicted positions) is theoreti-

cally Gaussian white noise. The ACF of innova-

tion residual is plotted against different time lag.

Accordingly, the ACF is independent of lag

time, which is a feature of Gaussian white noise.

2828 Wu et al.
beads that causes the linearly increasing positional variance

of the beads. Previous studies of gliding cytoskeletal fila-

ments, such as actin filaments and microtubules, have also

interpreted the increasing positional variance as a result of

protein friction (24,34–39).

The glycerol and in vitro gliding motility studies show that

the Kalman filter can restore particle trajectories from diffu-

sive as well as active transport, providing a more accurate

picture of the underlying dynamics. To further verify the

results from the motility studies, an independent method to

correct for trajectory error was carried out and compared to

the Kalman filtered MSD values and the raw data. The

MSD profiles from the two different methods shared an

approximate fivefold decrease in MSD value from the raw

data and were in good agreement when directly overlaid

(Fig. 6 E). Another way to verify the success of Kalman

filtering is to analyze the ACF of the innovation sequence

(zk � x̂k; measured position � predicted position) of the

Kalman filter. Theoretically, assuming correctness of the

model the innovation sequence is Gaussian white noise. In

this case, its ACF will be nonzero at zero lag and be zero

for all other time lags. We have plotted this in Fig. 6 F
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(40) and it can be seen that the innovation sequence is white.

Through these separate analyses of the Kalman filtering of

the gliding motility assay, which are independent of the

stochastic model used, we can solidly conclude that the Kal-

man filter can be successfully applied to this in vitro system.
DISCUSSION

In summary, the purpose for this study was to introduce the

application of the Kalman filter to the biological field as a first

step to explore this type of direction. The Kalman filter has

evolved since its initial development into an extremely

powerful tool in many applications, even including success-

ful application to the stock market (21). However, the current

involvement of the Kalman filter in biology is limited, and

this work suggests that the intracellular Kalman filtering

approach is feasible with careful progress based on the inves-

tigation of the in vitro systems studied here.

The application of the Kalman filter to biological systems

will encounter several challenges that must be overcome.

Subcellular dynamics are often complicated and effective

models that can faithfully describe them are usually
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unavailable. Many factors, such as the thermal fluctuations,

the steric effects from heterogeneous cellular architecture

and the dynamics of the cytoskeleton reorganization,

contribute to the complexity of the dynamic movement of

a micron- or submicron-scaled tracer inside a living cell.

Therefore, the first step to using a Kalman filter for this type

of approach is to determine the appropriate stochastic model

describing the motion of a subcellular object. Such a model

would highly depend on several factors describing the intra-

cellular objects of interest such as diffusivity, cell cycle stage,

microenvironmental conditions and composition. As the

model is developed, it can be incorporated into a Kalman filter

using the same methodology as the in vitro systems discussed

in this work. With the correct stochastic model in place, the

Kalman filter could become a powerful tool to reduce

measurement noise and reveal the real-time dynamic interac-

tions between a particle and its microenvironment.

Another challenge facing the application of the Kalman

filter to intracellular dynamics is the presence of photo-

bleaching effects or big movements out of the focal plane

in particle tracking experiments. For typical particles like

quantum dots and 100-nm diameter fluorescence micro-

spheres, which possess Q/R values within the range studied

here, the variance of the positioning error (R) is assumed

to be unchanged during the observation period in our

in vitro studies. However, these conditions may not be ful-

filled when studying the dynamics of a single molecule in

living cells at 30 fps due to the large mobility of the probing

molecule. The reported diffusivity of GFP in cytoplasm is

20 mm2/s and the focal depth ~1 mm. Thus, the time required

for the GFP to diffuse out of the focal plane is ~0.05 s (~ L2/D).

In that case, the R-value would be a function of the molecular

position in the z-direction and change markedly if the

temporal resolution is not correspondingly >30 fps. Photo-

bleaching effects would also change the R-value because

the dimming of particles lowers their peak intensity, causing

a gradual increase in positioning error. As the temporal reso-

lution is increased to offset movements out of the focal plane,

the acquired images would be correspondingly dimmer unless

the light source intensity was increased, which would further

irritate photobleaching problems.

This trade-off between temporal and spatial resolution has

limited our ability to further explore the cellular dynamic

process of subcellular components and intracellular micro-

rheology (41,42). Video-based microscopy studies have

provided a qualitative understanding of this issue (43), but

an optimal balance of temporal and spatial resolution has

not yet been developed fully. Recent developments in photon

detection techniques allow us to track object movement with

high temporal resolution (44), which would help to compen-

sate for movements out of the focal plane. As these types of

techniques develop and a more comprehensive knowledge of

spatio-temporal resolution emerges, problems associated

with photobleaching effects and movements out of the focal

plane can be overcome. High temporal resolution could then
be used in a particle tracking experiment at the expense of

some degree of spatial resolution that could later be restored

analytically by proper use of the Kalman filter, increasing

our capacity to identify and quantitatively characterize subtle

intracellular motion.

In this study, we characterized the performance of the Kal-

man filter in estimating the native trajectory of particles

diffusing within a glycerol solution and the transport process

of microtubules in vitro. As the difficulties that naturally arise

in the particle tracking of intracellular dynamics are resolved,

this study can provide a guideline to carefully judge the

performance of the Kalman filter in new biological applica-

tions. We showed that the Kalman filter is an effective tool

to eliminate positioning error incorporated into the real trajec-

tory during image acquisition while preserving the inherent

thermal fluctuations, and that the success of the Kalman

filter depends on the correct setting for the parameter describ-

ing Q/R. Kalman filtering can preserve the native fluctuations

while removing the measurement noise; hence it greatly

enhances the reliability of an estimated trajectory.

In our previous study (27), we have shown that the value of

R in a particle tracking experiment can be extracted using

a Monte Carlo simulation technique. The extracted value of

R is highly reproducible and successfully corrects the static

error of noisy MSD curves. In this study, we have further

shown that by using the values of Q and R extracted from

experiments, the individual trajectory resulting from the

Kalman filter is optimized. The reliability of Kalman filter

in predicting the trajectory can be assessed by the RMSE

computation, which is compared to a simulated, true trajec-

tory. The trajectory estimation from the Kalman filter using

the extracted values of Q and R can lead to a significant reduc-

tion of the RMSE value, close to the minimal value achievable

with exact knowledge of Q and R. At this minimum, the esti-

mated trajectory carries a MSD equal to the MSD obtained

from the true trajectory that can be proved mathematically

as well (see Supporting Material). Therefore, we conclude

that Kalman filter can effectively improve the video-based

particle-tracking trajectory in the in vitro systems we have

examined.
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