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Abstract

Type 1 diabetes (T1D) results from the autoimmune destruction of g-cells within the pancreatic islets of Langerhans. Clinical
islet transplantation from healthy donors is proposed to ameliorate symptoms, improve quality of life, and enhance the life
span of afflicted T1D patients. However, post-transplant outcomes are dependent on the survival of the transplanted islets,
which relies on the engraftment of the islets with the recipient’s vasculature among other factors. Treatment strategies to
improve engraftment include combining islets with supporting cells including endothelial cells (EC) and mesenchymal stem
cells (MSC), dynamic cells capable of robust immunomodulatory and vasculogenic effects. In this study, we developed an in
vitro model of transplantation to investigate the cellular mechanisms that enhance rapid vascularization of heterotopic islet
constructs. Self-assembled vascular beds of fluorescently stained EC served as reproducible in vitro transplantation sites.
Heterotopic islet constructs composed of islets, EC, and MSC were transferred to vascular beds for modeling transplantation.
Time-lapsed imaging was performed for analysis of the vascular bed remodeling for parameters of neo-vascularization.
Moreover, sampling of media following modeled transplantation showed secretory profiles that were correlated with
imaging analyses as well as with islet function using glucose-stimulated insulin secretion. Together, evidence revealed that
heterotopic constructs consisting of islets, EC, and MSC exhibited the most rapid recruitment and robust branching of cells
from the vascular beds suggesting enhanced neo-vascularization compared to islets alone and control constructs. Together,
this evidence supports a promising cell transplantation strategy for T1D and also demonstrates a valuable tool for rapidly
investigating candidate cellular therapies for transplantation.
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INSIGHT

Type 1 diabetes results from autoimmune destruction of insulin-producing cells within the pancreatic islets of
Langerhans. Cellular therapy approaches have the potential to restore the function. However, standard transplantation
of cadaveric islets is especially limited by inadequate engraftment of transplanted islets with the host vasculature and
incitement of a robust immune response. Strategies to improve outcomes have been focused on developing heterotypic
islet constructs that combine islets with endothelial and mesenchymal stem cells. We present an in vitro platform to
rapidly evaluate the efficacy of these heterotopic constructs to engraft with the host vasculature. Our platform allows
visualization and quantification of such events, along with collection of secretome, and is ideally suited for evaluating

candidate cellular therapies prior to transplantation.

INTRODUCTION

Type 1 diabetes (T1D) is an autoimmune disease that leads to
the destruction of the functional unit of the pancreas called
the islets of Langerhans. Islets are multicellular clusters closely
associated with the vasculature making its critical endocrine
function, i.e. secreting hormones like insulin in response to
molecular signals in the blood, a vital role for maintaining cell
metabolism and proper function of all body systems [1, 2]. Cur-
rently, there is no cure for T1D, and patients are unable to
maintain blood glucose levels without exogenous insulin, sup-
plements, and dietary regulation, all of which are unable to
prevent long-term complications and improve quality of life
[3-5].

Large efforts to achieve clinical success with islet trans-
plantation have been explored as a plausible solution for
patients with T1D. However, preclinical and clinical studies
of pancreatic islet transplantation for T1D have elucidated
some limitations surrounding vascularization and engraftment
of islet transplants, and in turn, the cells’ survival and
clinical outcomes [6-8]. The close proximity of islets to the
vasculature, thus oxygen-rich requirements, results in the added
difficulty of transplant survival directly after transplantation.
Efforts to improve engraftment of pancreatic islets include co-
transplantation strategies with the addition of mesenchymal
stem cells (MSC) [9, 10], which are robust cells with known
vascular-mediating propensities, and endothelial cells (EC) [11,
12], the cellular building blocks of the vasculature. Strategies
for organoid constructs have often combined both MSC and EC
with organ-specific cells and tissues to re-create the integral
components to an organ system [10, 13]. Moreover, the cultured
heterotopic islet constructs containing EC and MSC have
demonstrated marked success with initiating intravascular
network assembly prior to transplantation that has shown to
greatly improve engraftment after transplantation in preclinical
studies [10].

Here, we describe an in vitro platform that models neo-
vascularization of heterotopic islet constructs in parallel with
control groups to access the mechanistic activities correlative
to each type of islet construct to better understand ways to
potentially improve islet cell therapy. Vascular beds composed
of endothelial cell (vb-EC) networks were assembled in the wells
of 96-well plates as an easy and reproducible representation of
transplantation sites. Simultaneously, human donor pancreatic
islets were isolated and designated into four experimental
groups: Group 1 (islets only, current standard), Group 2 (islets
and EC), Group 3 (islets and MSC), and Group 4 (islets, EC, and
MSC). Using these multicellular combinations provided insight
into the contributions to vascularization potential for each

construct. By fluorescence imaging, we were able to visualize
the daily alterations of the construct with regards to the vascular
bed networks. As early as 24 h, we were able to see a vb-EC
remodeling proximal to the constructs prepared with MSC (i.e.
Groups 3 and 4) and integration into the constructs by 72 h. This
evidence was supported by quantitative parameters defined as
neo-vascularization and branching associated with vb-EC and
islet constructs. Moreover, sampling of the media generated
profiles of key mediators, including the insulin-like growth
factor (IGF) binding protein family, which were differentially
modulated during the first 24 h of neo-vascularization. Fol-
lowing neo-vascularization measurements and sampling, we
were capable of performing static glucose-stimulated insulin
secretion (GSIS) functional assays on this platform. Together,
Group 4 islets (islets, EC and MSC) outperformed all other groups
by demonstrating the most rapid and robust recruitment of vb-
EC to assimilate neo-vascularization in modeled transplantation
(Model-Tx). Our results not only permit access into the rapidly
changing processes that occur after ‘transplantation’, but further
support the use of MSC as promoters for enhanced neo-
vascularization. This methodology of Model-Tx also supports a
valuable tool for modeling transplantation in vitro for candidate
cell transplantation therapies.

MATERIALS AND METHODS

Cell culture, staining and formation of islet constructs

Human-bone-marrow-derived MSC were isolated from bone
marrow aspirates obtained from de-identified healthy donors
after provided written informed consent. All procedures
were carried out in accordance with relevant guidelines and
regulations, following a protocol approved by the Case Stem
Cell Facility Institutional Review Board (IRB) (approval # 09-
90-195). Cells were cultured as adherent cells in a humidified
incubator set to 37°C and 5% CO, in complete culture media
(CCM) containing Dulbecco’s modified eagle medium (Gibco,
Thermo Fisher Scientific, Waltham, MA) and 10% fetal bovine
serum (Seradigm, VWR, Radnor, PA), which was replaced every
3—4 days. Upon reaching 80% confluency, cells were passaged at a
1: 10 ratio by detaching with TrypLE™ Select Enzyme x1 (Gibco,
Thermo Fisher Scientific) and counted by live/dead exclusion
method using 0.4% trypan blue (Invitrogen, Carlsbad, CA). MSC
were used at passage 3 for all experiments. Human umbilical
vein EC (PromoCell, Heidelberg, Germany) were cultured as
adherent cells in a humidified incubator set to 37°C and 5% CO,
in complete endothelial growth media 2 (EGM-2; PromoCell),
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which was replaced every 3 days. EC were used at passages 3-5
for all experiments.

Human pancreatic islets were procured from deceased
organ donors at the Diabetes Research Institute Cell Processing
c¢GMP Facility (University of Miami, Miller School of Medicine,
Miami, FL). Institutional Review Board exemption was obtained
for pancreatic islets used for research. Harvested islets were
cultured in complete islet media containing Prodo islet
Media (standard) with human AB serum supplement (5%),
glutamine/glutathione supplement (2%), all purchased from
PRODO Laboratories, Inc. (Irvine, CA), at 37°C and 5% CO, for
24 h after pancreatic isolation procedures. Islets were collected
in conical tubes and centrifuged to proceed with staining.
Islets were stained with CellVue™ Maroon Cell Labeling
Kit (Thermo Fisher Scientific) according to manufacturer’s
instructions.

Prior to co-culture with islets, MSC or EC were washed
with sterile phosphate buffered saline (PBS; Thermo Fisher
Scientific) and detached with TrypLE™ EXPRESS (Gibco, Thermo
Fisher Scientific) from culture plastic. Enzymatic reactions were
neutralized with corresponding CCM and cell pellets were
obtained by centrifugation. EC and MSC were counted and
then stained with PKH26 red fluorescent cell linker (Sigma-
Aldrich, St. Louis, MO) and CellTracker™ Blue CMAC (Invitrogen),
respectively, according to manufacturer’s instructions. EC and
MSC were re-suspended in complete islet media, counted and
proceeded to co-culture conditions.

Using Corning® 96-well Spheroid Microplates (Corning Incor-
porated, Corning, NY), all four groups of islet constructs were
co-cultured prior to modeling transplantation. Approximately,
five islet equivalents (IEQ; average 1500 islet cells per cluster)
were hand selected and transferred to each wells of all groups.
Following, 5.0 x 10® EC and/or 1.0 x 10®> MSC were added to
appropriate wells to generate Group 2 (islet + EC) constructs (5
IEQ:5.0 x 10% EC), Group 3 (islet + MSC) constructs (5 IEQ:1.0 x
10® MSC) and Group 4 (islet + EC + MSC) constructs (5 IEQ:5.0
x 10% EC:1.0 x 10° MSC). All conditions were maintained in
culture and self-assembled into spheroids at 37°C and 5% CO,
for 48 h.

Vascular bed assembly as transplantation site

Cultrex PathClear Reduced Growth Factor Basement Membrane
Extract (R&D Systems, Inc., Minneapolis, MD) was thawed
overnight at 4°C, and 80 pl was added to each well of a
Corning™ Falcon™ 96-well Imaging Microplate (Thermo Fisher
Scientific). Plates were subsequently centrifuged at 3000 rpm
for 10 min at 4°C and transferred to incubators set at 37°C
for at least 30 min for gelation before the addition of cells.
Simultaneously, EC were collected as previously described
and stained with PKH67 green fluorescent cell linker (Sigma-
Aldrich) according to manufacturer’s instructions. EC were
re-suspended in complete EGM-2 at 1.5 x 10°/ml, and 100 pl
of cells were seeded into each basement membrane extract-
coated well. Plates were transferred to incubators set at 37°C
and 5% CO, and self-assembly of vascular beds was achieved
within 24 h.

Transfer and maintenance of islet constructs for
Model-Tx

According to the schematic in Figure 1, islet constructs for all
four groups were individually transferred to a well containing

the vascular beds using a micropipette. Constructs randomly
distributed and localized to the vascular beds. One hundred
microliter (100 pl) of complete islet media was added to the
remaining complete EGM-2 media, and microplate was trans-
ferred to an incubator set at 37°C and 5% CO,. After 24 h, media
from each well was collected and stored at —20°C for further
analysis, and fresh complete islet media was replaced every 24 h
prior to imaging.

Microscopic imaging and quantitative analysis of
neo-vascularization

Bright field and fluorescence images of all constructs before and
after Model-Tx were acquired using an Eclipse Ti2 microscope
(Nikon Instruments, Inc., Melville, NY). Additionally, Z-stack con-
focal images were captured at 72 h after Model-Tx for 3D ren-
dered images using a Leica TCS SP5 confocal microscope (Leica
Microsystems Inc., Buffalo Grove, IL), which were imported into
SyGlass software (IstoVisio, Inc., Morgantown, WV) for virtual
reality generated videos.

Images (2-D) of constructs taken at 10x magnification were
further analyzed every 24 h for measurement of construct sizes
and parameters of neo-vascularization upon Model-Tx. Images
were first uploaded into ImageJ software (National Institute of
Health, Bethesda, MD). Diameters of each construct were mea-
sured in Image] for all groups (n = 8). To quantitatively compare
neo-vascularization, fluorescein isothiocynate (FITC) channel
images were uploaded into ImageJ software and converted to
binary using Otsu thresholding. This method was experimen-
tally tested against other thresholding methods in order to find
a consistent and objective means of normalizing the intensities
of all images. Particles were then analyzed for surface area
measurements positive for vb-EC surrounding each construct.
For branching, FITC channel images were used to count the
number of branches radiating directly to the construct. Analysis
was performed on images from all groups (n = 5) from 24-72 h
after Model-Tx.

Enzyme-linked immunosorbent assays

Conditioned media obtained from co-cultures were thawed, and
protease inhibitor cocktail was added to stabilize proteins. Each
sample was diluted (1:50) with distilled water. Human C-Series
enzyme-linked immunosorbent assays (ELISA) growth factor
arrays (RayBiotech Life, Inc., Norcross, GA) were performed with
samples from each group (n = 5) according to manufacturer’s
instructions.

Glucose-stimulated insulin secretion

GSIS assays were performed to assess functionality of islet con-
structs after 72 h after Model-Tx. Constructs were first equili-
brated for 1 h in buffer solution (125 mM NacCl, 5.9 mM KCl,
2.56 mM CaClp, 1.2 mM MgCl, 25 mM HEPES and 0.1% w/v
bovine serum albumin; pH 7.4) containing low glucose (2.8 mM).
Then, constructs were sequentially incubated at 37°C in fresh
low glucose buffer solution followed by high glucose (16.8 mM)
buffer solution for 40 min interspersed by a wash with PBS. After
incubation in low or high glucose solutions, the supernatant
from each sample (n = 11 per group) was collected and insulin
concentration was detected using an ELISA kit for human insulin
(10-1113-10; Lot #29177, Mercodia, Sweden) according to the
manufacturer’s instructions. Concentrations were calculated by
a plate reader (Beckman Coulter DTX880 Multimode Detector)
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Figure 1. Schematic of pancreatic islet transplantation using in vitro model. Co-transplantation strategies for improving islet neo-vascularization were explored using
a controlled and simplified in vitro method. Step 1: Several fluorescent stains were employed for each cell type and co-cultured according to designated group for 48
hours. Step 2: Vascular (vasc) beds were assembled as model transplantation (Tx) sites. Step 3: Time of Tx was designated as the event when a construct from each
group (n = 8) was transferred, or “transplanted”, onto a vasc bed. Step 4: Acquisition of images for qualitatively and quantitatively analyses after experimental islet
constructs were transplanted, or Post-Model-Tx. Images created with BioRender.com. Abbreviations: endothelial cells (EC), mesenchymal stem cells (MSC), vascular bed

EC (vb-EC).

with Multimode Analysis Software v3.3.0.9 using a cubic spline
regression of the absorbance at 450 nm of standards minus
absorbance of the blank.

Statistical analysis

Quantitative comparisons were performed using one-way or
two-way ANOVA followed by Bonferroni or Dunnett multi-
ple comparisons test, respectively, using Prism v8 software
(GraphPad, San Diego, CA). All values were represented as the
mean =+ standard error of the mean, and statistical significance
was reported against the islet-only group for comparison
(*,P < 0.05; **,P < 0.01; ***; P < 0.001).

RESULTS

Assembly of in vitro transplantation model is rapid
and reproducible

Islet-only or heterotopic islet constructs were strategically gen-
erated with or without the additions of EC and MSC according
to designated group. Preliminary optimization indicated that the
combination of islets, EC and MSC required 24-48 h of self-
aggregation into a spheroid that was then able to recruit the vb-
EC at a controlled rate during Model-Tx. Reduced aggregation
times resulted in complete dissociation of vascular networks,
disassembly of islet constructs and/or total (i.e. uncontrolled)
recruitment of vb-EC to islets constructs (Supplementary Fig. S1).
Therefore, islet constructs were consistently and reproducibly

generated by allowing co-culture times of 48 h for each group.
Although islets are irregular clusters of cells, the addition of EC
and more noticeably MSC assembles a more uniformly shaped
single spheroid construct after 48 h (Fig. 2A). Time-lapse imaging
using fluorescence microscopy captured the progression of tube
formations, and complete vascular beds of assembled vb-EC
were achieved by 24 h of seeding. By standardizing protocols for
the 24-h duration, complete vascular beds were easily achieved
and reproducible, which can be verified at low and high magni-
fications using either bright field or fluorescence filters (Fig. 2B).

Markedly enhanced recruitment of vb-EC to Group 4
(islets + EC + MSC) constructs

Recruitment of vb-EC towards and subsequently into each con-
struct was visualized and quantified to determine, which cellu-
lar composition mediated the greatest or ideal pro-angiogenic
and pro-vasculogenic signaling. Fluorescence staining of these
cells captured the changes to the vascular beds relative to the
transplanted constructs over 72 h (Fig. 3). Neo-vascularization
was quantified by total surface area of FITCT vb-EC localized
to the area of interest containing the constructs. Within 24 h,
neo-vascularization was significantly greater with the Group 4
constructs (4.88 x 10* & 4.68 x 10° pm?; P < 0.01) compared to
Group 1 (islets alone; 2.16 x 10* £ 1.30 x 10° pm?), suggesting
most rapid recruitment than all other groups. Both Group 2
(islets + EC; 3.08 x 10* £ 7.39 x 10° pm?) and Group 3 (islets
+ MSC; 4.08 x 10* & 574 x 10° um?) constructs enhanced
recruitment within 24 h of Model-Tx more than the islets alone.
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Figure 2. Assembly of islet construct groups and vascular beds prior to Model-
Tx. A. All cell types were stained and designated to groups and co-cultured for 48
hours for the formation of constructs. Scale bar represents 100 pm. B. Microscopic
images captured at 10x magnification show time-lapse self-assembly of vb-EC
into networks that represent the sites of transplantation. Scale bars indicate
500 pm. Group 1: Islets only, Group 2: Islets+EC, Group 3: Islets+MSC, Group 4:
Islets+MSC+EC. Abbreviations: Modeled transplantation (Model-Tx), endothelial
cells (EC), mesenchymal stem cells (MSC), vascular bed EC (vb-EC).

By 48 h, neo-vascularization was comparable between all groups.
Although there were no significant differences, Group 4 (islet +
EC + MSC) constructs (1.66 x 10° + 4.68 x 10° pm?) achieved
the largest increase in neo-vascularization, followed by Group 1
(islets alone; 1.39 x 10° 4 2.13 x 10* pm?), Group 3 (islets + MSC;
1.12 x 10° + 3.74 x 10° pm?), and Group 2 (islets + EC; 8.01 x
10* £ 1.01 x 10% pm*) at 72 h of Model-Tx (Fig. 4A).

Vascular branches comprised of the FITCT vb-EC (green)
intersected with all constructs within 24 h of Model-Tx, which
subsequently increased every 24 h thereafter indicated by
enhanced FITC* cells localized at the construct transplantation
sites. Images clearly show the Group 4 and Group 3 constructs
(islets + MSC and =+ EC, respectively) with significantly greater
numbers of vascular branching at all time points compared to
Group 1 (islets alone). At 24, 48 and 72 h of Model-Tx, Group 4
constructs were associated with averages of 6.2 + 0.5 (P < 0.001),
6.2+ 0.5(P <0.001),and 6.4 + 0.4 (P < 0.05) branches, respectively.
Group 3 (islet + MSC) constructs also had significantly more
branching at 24 h (5.8 + 0.5; P < 0.01), 48 h (5.6 + 0.5; P < 0.01)
and 72 h (6.6 + 0.4; P < 0.05) compared to Groupl (islets alone)
with 3.6 +0.2,3.4 £ 0.5 and 4.8 + 0.6 branches at 24,48 and 72 h,
respectively. Displaying an opposite trend, the total branches
to Group 2 (islets + EC) constructs decreased from 4.4 + 0.8
branches at 24 h to 3.6 + 0.2 and 3.8 + 0.6 branches at 48 and
72 h after Model-Tx, respectively.

Increasing sizes of the constructs is another assessment of
neo-vascularization as vb-EC integrate into the constructs to
establish cellular connections. At 24 h post-Model-Tx, Group
3 (islets + MSC) constructs (261 + 6 pm; P < 0.05) exhibited

the largest construct diameter followed closely by the Group 4
constructs (islets + EC + MSC; 242 + 10 pm) whereas Group 2
constructs (islets + EC; 213 + 28 um) and Group 1 (islets alone;
182 + 30 pm) were smaller in size. At 48 h, Group 4 constructs
(islets + EC + MSC; 273 £ 22 um; P < 0.05) and Group 3 constructs
(islets + MSC; 271 + 13 pm; P < 0.05) were markedly larger in
size than Group 1 (islets alone; 200 + 19 um). A slight increase
in size was seen in Group 1 (islets alone; 206 + 10 pm) by 72 h
post-Model-Tx, while Group 4 constructs (islets + EC + MSC;
310 + 26 pm; P < 0.001) and Group 3 constructs (islets + MSC;
290 + 7 pm; P < 0.01) were significantly larger in size suggesting
robust recruitment and neo-vascularization from the surround-
ing vascular bed. Consistent with previous neo-vascularization
parameters from the Group 2 (islets + EC) constructs, construct
sizes decreased from 237 + 24 pm to 195 + 13 pm at 48 and
72 h post-Model-Tx, respectively (Fig. 4C). For a more detailed
visualization of this analysis, see Figure 5.

In support of the above data, qualitative evidence was
obtained from representative images rendered in 3D and virtual
reality videos. These depictions not only demonstrate the
co-localization of the vb-EC to Group 4 (islets + EC + MSC)
constructs but also the integration within the constructs.
Furthermore, this imaging shows the intravascular networks
achieved by the cells composing the Group 4 constructs (islets +
EC + MSC; Supplementary Movie S1). Together, these compelling
imaging strategies bolster the quantitative analysis techniques
of vb-EC analysis to assess neo-vascularization.

Functional assessments showed lower insulin secretion
in constructs containing MSC

Islet function of each construct was quantitatively compared
by low and high glucose challenges and subsequent detection
of secreted insulin. Significant differences in secreted insulin
were measured for the low (905.66 + 93.28 mU/L) and high
(1738.88 + 446.17 mU/L; P < 0.0001) glucose challenges in Group
1 (islet only). Similar secreted insulin levels were measured in
Group 2 (islets + EC) for the low (989.44 + 259.99 mU/L) and high
(1826.88 + 524.32; P < 0.0001 mU/L) glucose challenges. Although
Group 3 (islets + MSC) maintained comparable secreted insulin
levels in the low glucose challenge (932.32 + 260.98 mU/L), the
high glucose challenge (1498.50 + 349.49 mU/L; P < 0.01) showed
a reduction in secreted insulin. Secreted insulin measured
during the low glucose challenge (978.06 + 340.11 mU/L) in
Group 4 (islets + MSC + EC) was comparable to the levels in
all groups; however, levels of secreted insulin during the high
glucose challenge (1291.10 + 210.20 mU/L) was substantially
decreased (Fig. 4D).

Group 4 (islets + EC + MSC) constructs show modulated
secretory profiles

Growth factor ELISA detected several proteins with angiogenic
activities; however, among those detected were basic fibroblast
growth factor (FGF), endothelial growth factor (EGF), IGF-1 and
vascular endothelial growth factor (VEGF); all of these were
exogenous supplements to the media that the vb-EC cultures for
vascular bed formation during initial assembly. Although media
was removed and replaced with islet media for the remainder
of the Model-Tx period, these proteins were removed from the
analyses to avoid confounding effects of any potential residues.
Discerning the profiles of growth factors with multi-cellular
constructs relies on comparing each group to all other groups.
Between Group 1 (islets only) and Group 2 (islets + EC groups),
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the secretory profile of the additional EC contribution to the
constructs showed a large presence of common EC mediators
including amphiregulin, heparin-binding EGF, IGF binding pro-
tein (IGFBP) proteins, and platelet-derived growth factor proteins
(Fig. 6A).

Interestingly, the profiles of growth factors secreted by the
constructs containing MSC, i.e. Group 4 (islets + EC + MSC)
and Group 3 (islets + MSC) constructs, demonstrated an over-
all reduction in detected proteins present in the conditioned
media compared to Group 1 (islets alone) and Group 2 (islets
+ EC) constructs. The most significantly attenuated secretory
proteins, compared to the Group 1 (islet alone) were granulocyte-
colony stimulating factor (G-CSF; 0.40 + 0.07-fold; P < 0.05) and
IGF-2 (0.29 £ 0.07-fold; P < 0.05), which were measured from the
Group 4 constructs (islets + EC + MSC). The growth factors of
the IGFBP family were most modulated among the groups. More
specifically, Group 4 (islets + EC + MSC) and Group 2 (islets +
EC) constructs secreted increased levels of EGF receptor, IGFBP-
3, IGFBP-4, and most notably from the Group 4 constructs (islets
+ EC + MSC), IGFBP-6 (Fig. 6B). Group 4 (islets + EC + MSC)
constructs also demonstrated relatively higher levels of FGF
proteins including FGF-4, FGF-6 and FGF-7 (Fig. 6A).

3D rendered images reveal visible neo-vascularization
into constructs containing MSC

Confocal imaging acquired Z-stack images taken of represen-
tative constructs for each group after 72 h post-Model-Tx. By
selecting and imaging individual fluorescence channels, mul-
tiple perspectives were generated to portray the localization of
the constructs relative to the vb-EC. Most importantly, 3D planar
views show the side angle of the FITCT vascular bed, highlighted
by the white dotted line, revealing the protrusion of vb-EC that
surround and have integrated directly into the constructs, occur-
ring only in Group 4 (islets + EC + MSC) and Group 3 (islets

+ MSC) constructs (Fig. 7). Videos of 3D generated constructs
show the representative constructs for better visibility of cellular
orientations after 72 h of Model-Tx (Supplementary Movie S1).

DISCUSSION

Vast evidence from in vivo studies has compiled a strong foun-
dation for translational research, yet predictive outcomes are
confounded by the complexity of multiple organ systems work-
ing in tandem making simplified in vitro models and organ-on-
chip platforms attractive for many applications [14-16]. Grow-
ing interest has focused on reducing these complex networks
of activities to in vitro platforms that model specific cellular
interactions in order to identify and better understand transla-
tional mechanisms and their corresponding contributions. Pio-
neers for organ-on-chip developments have substantiated a vital
need for narrowing the complexities of organ systems to investi-
gate and carefully tune pertinent aspects of physiological mech-
anisms with reproducible outcomes [14, 16]. These in vitro plat-
forms have the potential to not only model diseases, personalize
therapies, and evaluate high-throughput testing of pharmaceu-
ticals, but also to allow access into key systems that are not
permitted by in vivo models [15, 17, 18].

Here, we demonstrate a platform that models transplanta-
tion to parallel and corroborate an in vivo study by Takahashi
etal. [10]. The success of pancreatic islet transplantation is
contingent on several factors, from the rigorous islet pro-
curement procedures from healthy donor pancreases to the
engraftment into T1D recipients [19, 20]. Furthermore, immune
system reactivity for allografts and potential re-emergence
of autoreactivity against transplanted cells after engraftment
are a few of the many areas pursued by preclinical and
clinical investigations to improve this process [9, 21]. MSC have
demonstrated safety in several clinical trials when combined
with solid organ transplantation and cell therapy, yielding strong
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Figure 6. Growth factor profiles determined mediators of neo-vascularization. A. Heat map representation of enzyme-linked immunosorbent assay results of human
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(MSC), vascular bed EC (vb-EC).

evidence for their capabilities as therapeutic modalities [22-24].
MSC are maintained in the perivascular niche and inherently
relay molecular signals with the vasculature through a tight
interaction with EC [25, 26]. Mediating angiogenic signaling as
well as modulating immune system responses and inflamma-
tion is the more well-investigated therapeutic effects of MSC
[25, 27, 28]. Islets are clusters of endocrine cells that function in
response to molecules in the blood. Proximity to the bloodstream
and high oxygen demands are requisite for islet survival and
function, thus are of high importance after islet transplantation.
These priorities have led to experimental strategies to optimize
the site of transplantation such as portal vein infusion and
omental transplantation. However, strategies for enhancing
neo-vascularization potential and transplantation sites of the
islets remain of great interest [29-32]. An alternative approach
for improving neo-vascularization of transplanted islets has
been evaluated by initiating pre-vascularization strategies prior
to transplantation. Using co-culture techniques, MSC and EC

have been combined with islets to generate constructs called
vascularized islets. Short-term co-culture (48 h) has demon-
strated initiation of intravascular networks that have been
suggested to improve neo-vascularization once transplanted in
vivo [10]. However, investigating the mechanistic underpinnings
and contributions of each cell type during neo-vascularization
after transplantation is limited using animal models. By
modeling transplantation in vitro, imaging, sampling, and
simplification from coordinated organ systems permit access
into mechanisms of interest to directly study the controlled
outcomes of specific therapeutic strategies. In this study, an in
vitro vascular bed simulating a transplantation site was used to
demonstrate a controlled method to quantitatively compare
the angiogenic and vasculogenic properties of heterotopic
islets, to reproduce and validate previously reported in vivo
evidence.

During the 48-h co-culture, Group 4 (islets + EC + MSC)
and Group 3 (islet + MSC) constructs were rapidly assembled
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Figure 7. 3D images of islet groups after Model-Tx. Confocal images were acquired as Z-stacks taken at 10x magnification. Fluorescence channels were separated and
organized into several orientations to visualize the composition of the islet construct areas. 3D planar view of FITGCt vb-EC shows the level of the vascular bed (white
dotted lines) and the protrusion created by vb-EC recruited into the construct visible in Groups 3 and 4 (white arrow). Group 1: Islets only, Group 2: Islets+EC, Group 3:
Islets+MSC, Group 4: Islets+MSC+EC. Abbreviations: Modeled transplantation (Model-Tx), endothelial cells (EC), mesenchymal stem cells (MSC), vascular bed EC (vb-EC).

into tightly aggregated spheroids. After Model-Tx, analysis of
neo-vascularization, including recruitment, co-localization, and
branching of vb-EC, was significantly more rapid and robust with
islet constructs containing both MSC and EC, compared to islets
alone. Comparatively with the controls, constructs that were co-
cultured only with MSC (Group 3) prior to Model-Tx showed sim-
ilarly rapid and robust effects as the islet constructs containing
both MSC and EC (Group 4). This evidence demonstrates the
potency of MSC for cell signaling and migration, which is further
supported by the reduced parameters of neo-vascularization
measured in the Group 2 (islet + EC) control construct that lacks
MSC. Furthermore, the pin-wheel-like structures created by vb-
EC visualized within the constructs by 72 h suggest intravascular
networks. These key features support the proposed mechanisms
and results by Takahashi et al. [10].

Not only does this model provide a time-lapse view into the
coordinated movements that occur after modeling transplanta-
tion but also allowed us to directly sample the mediators that
guide these processes. Unlike Group 2 (islet + EC) constructs, the
secretory profiles of constructs containing MSC show attenua-
tion of common pro-angiogenic signaling. Together with our pre-
liminary evidence, these data suggest that uncontrolled release
of mediators can have an untoward effect, which may lead
to dissociation of the vasculature bed. MSC inherently receive
signals to meet the needs of their surrounding environment,
thus a controlled and sustained release of necessary signals may
have been the mechanistic action that resulted in rapid and
robust neo-vascularization. Many of the active proteins detected
in the first 24 h of Model-Tx measured in Group 4 were of
the IGFBP family, known angiogenic mediators with coordinat-
ing levels to control angiogenesis [33-35]. The largest increase
measured by Group 4 (islets + EC + MSC) revealed IGFBP-6
as the highly secreted mediator. IGFBP-6 has known effects to

modulate angiogenic signals including controlling the effects of
the pro-angiogenic signal IGF-2 [35, 36]. This evidence directly
supports the significant reduction of IGF-2 that coincided with
increased IGFBP-6 in our system by Group 4 (islets + EC + MSC).
Moreover, secretion of G-CSF was significantly downregulated,
which has known angiogenic potential and cell mobilization
effects. Physiologically, G-CSF is released during inflammation
or damage to recruit surrounding EC for local VEGF signaling
[37, 38]. This downregulation could suggest a level of control to
specifically limit the degree of cell motility that corresponds to
the controlled integration of vb-EC while preserving the vascular
networks as seen in the time-lapse images.

While in vitro platforms will never fully capture the com-
plexities of whole organ systems or organisms, they provide
a window into cellular events by sampling and analyses of
molecular cues that guide those interactions. Furthermore, they
enable functional testing of engineered cellular constructs. By
performing GSIS test using sequential low and high glucose
challenges, the functional capacity specifically of the islets was
determined in each group. Insulin secretion during low glucose
challenges in each group was comparable; however, differences
among the groups were detectable during the high glucose chal-
lenges. Group 1 (islets only) and Group 2 (islets + EC) showed
comparable secreted insulin levels in both the low and high
glucose challenges, suggesting the addition of EC to the islet
constructs did not improve or compromise islet function. Insulin
secreted during the high glucose challenge in Group 3 (islet +
MSC) and Group 4 (islet + MSC + EC) were reduced suggesting
either the functional capacity of islets was compromised by the
association with MSC or the competition for glucose altered
insulin function in the high glucose system. Group 4 (islets +
MSC + EC) showed the largest reduction in insulin secretion
during high glucose challenge, and constructs were generated
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with the highest number of cells. Thus, it is likely that the
competition for nutrients compromised the function of the islets
given that MSC are highly glycolytic cells utilizing glucose for
energy production [39]. Moreover, our results are consistent with
previous reports where in vitro assessments of islets co-cultured
with MSC showed limited function [40]. Yet, preclinical in vivo
functional tests with prior co-culture and co-transplantation
with MSC showed improvements to islets viability and function
[41, 42].

Together, this study demonstrated an in vitro technique of
Model-Tx that permitted the exploration into investigational
cell therapies. By providing a window and sampling capabilities
into the rapid processes after ‘transplantation’, we were able to
demonstrate the many parameters that this model produces
for analyzing neo-vascularization. In the studies currently
underway, the platform is being used to streamline islet
transplant protocols, with significant translational implications
towards T1D treatment. This model may also be of value to wider
fields of research including organoids, induced pluripotent stem
cell-derived cell therapeutics and related tissue-engineered
products.

CONCLUSION

In vitro models provide valuable tools to represent in vivo envi-
ronments in a simplified and controlled manner to study spe-
cific mechanisms of interest. Strategies for cell transplantation
for T1D patients were optimized to include heterotopic islet
constructs as a potentially improved construct for enhancing
neo-vascularization. Our model of transplantation permitted
the visualization, sampling and quantitative analysis of islet
construct ‘neo-vascularization’ that can be employed for rapid
exploratory investigations for cell transplantation strategies.
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